Disulfide relays between and within proteins: the Ero1p structure.
نویسندگان
چکیده
The essential flavoenzyme Ero1p both creates de novo disulfide bonds and transfers these disulfides to the folding catalyst protein disulfide isomerase (PDI). The recently solved crystal structure of Ero1p, in combination with previous biochemical, genetic and structural data, provides insight into the mechanism by which Ero1p accomplishes these tasks. A comparison of Ero1p with the smaller flavoenzyme Erv2p highlights important structural elements that are shared by these flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases and suggests some general themes that might be common to proteins that generate disulfide bonds.
منابع مشابه
Structure of Ero1p, Source of Disulfide Bonds for Oxidative Protein Folding in the Cell
The flavoenzyme Ero1p produces disulfide bonds for oxidative protein folding in the endoplasmic reticulum. Disulfides generated de novo within Ero1p are transferred to protein disulfide isomerase and then to substrate proteins by dithiol-disulfide exchange reactions. Despite this key role of Ero1p, little is known about the mechanism by which this enzyme catalyzes thiol oxidation. Here, we pres...
متن کاملBalanced Ero1 activation and inactivation establishes ER redox homeostasis
The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balan...
متن کاملEro1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.
Native protein disulfide bond formation in the endoplasmic reticulum (ER) requires protein disulfide isomerase (PDI) and Ero1p. Here we show that oxidizing equivalents flow from Ero1p to substrate proteins via PDI. PDI is predominantly oxidized in wild-type cells but is reduced in an ero1-1 mutant. Direct dithiol-disulfide exchange between PDI and Ero1p is indicated by the capture of PDI-Ero1p ...
متن کاملTwo pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.
In the major pathway for protein disulfide-bond formation in the endoplasmic reticulum (ER), oxidizing equivalents flow from the conserved ER-membrane protein Ero1p to secretory proteins via protein disulfide isomerase (PDI). Herein, a mutational analysis of the yeast ERO1 gene identifies two pairs of conserved cysteines likely to form redox-active disulfide bonds in Ero1p. Cys100, Cys105, Cys3...
متن کاملModulation of Cellular Disulfide-Bond Formation and the ER Redox Environment by Feedback Regulation of Ero1
Introduction of disulfide bonds into proteins entering the secretory pathway is catalyzed by Ero1p, which generates disulfide bonds de novo, and Pdi1p, which transfers disulfides to substrate proteins. A sufficiently oxidizing environment must be maintained in the endoplasmic reticulum (ER) to allow for disulfide formation, but a pool of reduced thiols is needed for isomerization of incorrectly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in biochemical sciences
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2004